ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Декан факультета Аэрокосмический

Электронный документ, подписанный ПЭП, хранится в системе электронного документосборота (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Федоров В. Б. Пользователь: fedorovb Пата подписания © 20 6 2021

В. Б. Фёдоров

РАБОЧАЯ ПРОГРАММА

дисциплины ДВ.1.02.02 Современные программные расчетные комплексы для специальности 24.05.02 Проектирование авиационных и ракетных двигателей уровень специалист тип программы Специалитет специализация Проектирование жидкостных ракетных двигателей форма обучения очная кафедра-разработчик Летательные аппараты

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 24.05.02 Проектирование авиационных и ракетных двигателей, утверждённым приказом Минобрнауки от 16.02.2017 № 141

Зав.кафедрой разработчика, д.техн.н., проф.

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота и Кожно-Уральского госудательенного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП СВОМАТЕЛЬЕ СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Подъзователь: degitary В Пата подписания: 02 06 2021

В. Г. Дегтярь

Разработчик программы, к.техн.н., доцент

Электронный документ, подписанный ПЭП, хранитея в системе электронного документосборота Южно-Уральского государственного университета

Кому выдан: Терехин А. А. Пользователь: terekhina.

Ната подписание: 20 de 2021

А. А. Терехин

СОГЛАСОВАНО

Зав.выпускающей кафедрой Двигатели летательных аппаратов д.техн.н., проф.

С. Д. Ваулин

1. Цели и задачи дисциплины

Дисциплина «Современные программные расчетные комплексы» предназначена для студентов, обучающихся по специальности 24.05.02 Проектирование авиационных и ракетных двигателей (Инженер). Общепрофессиональная дисциплина «Современные программные расчетные комплексы» предназначена для повышения уровня обученности студентов применению информационных технологий при решении инженерных задач механо-технологического плана. Предметом дисциплины являются программные средства и методики их применения, позволяющие повысить качество проектирования изделий и технологий при резком снижении временных затрат. Цель курса — обеспечить комплекс знаний и умений студентов, позволяющий им быстрее и с более высоким качеством выполнять курсовые и дипломные проекты, а после окончания вуза — быстро и качественно производить проектные работы с применением вычислительной техники.

Краткое содержание дисциплины

Трёхмерные модели; методика разработки поверхностной модели; параметрическое конструирование; порядок создания 2D-параметрической модели; порядок создания 3D параметрической модели; оформление параметрических моделей; выполнение инженерных расчетов; способы оценки инженерных решений; правила подготовки проектных документов.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине (ЗУНы)
ОК-22 способностью самостоятельно приобретать с помощью информационных технологий и использовать в практической деятельности новые знания и умения, в том числе в новых областях знаний, непосредственно	Знать:Принцип приобретения с помощью информационных технологий новые знания и умения Уметь:Использовать в практической деятельности новые знания и умения, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности Владеть:
ПК-1 способностью принимать участие в работах по расчету и конструированию отдельных деталей и узлов двигателей и энергетических установок ЛА в соответствии с техническими заданиями и использованием	Знать:Принципы работы по расчету и конструированию отдельных деталей и узлов двигателей и энергетических установок ЛА в соответствии с техническими заданиями Уметь:Выполнять конструирование отдельных деталей и узлов двигателей и энергетических установок ЛА в соответствии с техническими заданиями Владеть:

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
Б.1.12 Инженерная графика	Б.1.39 Конструирование жидкостных ракетных

двигателей

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования	
р. 1.12 инженерная графика	Уметь читать и создавать конструкторскую документацию	

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч.

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 4
Общая трудоёмкость дисциплины	108	108
Аудиторные занятия:	48	48
Лекции (Л)	16	16
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	32	32
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)		60
Подготовка к зачету	60	60
Вид итогового контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

№	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах			
раздела	•	Всего	Л	П3	ЛР
1	Введение в САПР	2	2	0	0
2	Введение в системы инженерного анализа	2	2	0	0
3	Общие принципы проектирование деталей	4	2	2	0
4	Способы создания твердотельных деталей и сборок	9	3	6	0
5	Настройка шаблонов деталей и сборок	3	1	2	0
6	Создание чертежей деталей	11	1	10	0
7	Создание чертежей сборок	5	1	4	0
8	Инженерный анализ задач гидро-газодинамики	6	2	4	0
9	Инженерный анализ задач на прочность	6	2	4	0

5.1. Лекции

No	№		Кол-
"		Наименование или краткое содержание лекционного занятия	во
лекции	раздела		часов

1	1	Классификация САПР и программ инженерного анализа. Принципы создание чертежей деталей и сборок по ЕСКД.	2
2	2	Основы постановки численного моделирования процессов и принципы проведения инженерного анализа.	2
3	3	Общие принципы проектирование: современные подходы твердотельного моделирования изготовления деталей.	2
4	4	Способы создания твердотельных деталей и сборок, связь твердой модели с чертежом. Принципы передачи данных между чертежом и твердотельной моделью.	3
5	5	Настройка шаблонов деталей и сборок: основные принципы настройки шаблонов деталей и твердотельных моделей и сборок.	1
6	6	Создание чертежей деталей по ЕСКД. Лист. Формат. Основная надпись чертежа. Принцип создания чертежа. Настройка параметров оформления чертежа. Работа с чертежами и листами чертежа.	1
7	7	Работа в режиме сборка. Сборка «снизу вверх». Сборка «вверх снизу». Основные сопряжения. Дополнительные сопряжения. Методика выполнения сборок.	1
8	8	Инженерный анализ задач гидро-газодинамики: поперечное обтекание балки, методы контроля полученного решения.	2
9	9	Инженерный анализ задач на прочность: задача по определению напряженно- деформированного состояния и определение параметров устойчивости конструкции на базе прочностного расчета.	2

5.2. Практические занятия, семинары

№ занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	3	Общие принципы проектирование деталей: быстрый старт, пооперационное разбиение элементов детали, связи моделей и чертежных размеров, принципы механообработки деталей.	2
2, 3, 4		Способы создания твердотельных деталей и сборок: различная реализация принципов проектирования в твердотельных деталях на простых примерах болта и гайки.	6
5	5	Настройка шаблонов деталей и сборок: выполнение настройки шаблона детали и чертежа, обзор готовых шаблонов.	2
6, 7	6	Создание чертежей деталей: твердотельных моделей и чертежей к ним на примере деталей получаемых при использовании токарных операций, фрезерных операций, расточных операций, слесарных операций. Отображение технологических операций в дереве построения. Создание чертежей по ЕСКД.	4
8, 9, 10	6	Создание чертежей деталей: твердотельных моделей и чертежей к ним на примере деталей получаемых при использовании токарных операций, фрезерных операций, расточных операций, слесарных операций. Отображение технологических операций в дереве построения. Создание чертежей по ЕСКД.	6
11, 12	7	Создание чертежей сборок: вал-втулка, болт-гайка, корпус-фланец нижнийфланец верхний, использование библиотеки стандартных изделий.	4
13, 14	8	Поперечное обтекание балки с использование модулей ANSYS CFX и ANSYS Fluent, методы контроля полученного решения.	4
14, 16		Определение напряженно-деформированного состояния при поперечном изгибе балки и определение параметров устойчивости тонкостенной облолочки с использованием платформы WorkBench Absys.	4

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС			
Вид работы и содержание задания	Список литературы (с указанием разделов, глав, страниц)	Кол-во часов	
птрораоотка лекционного материала	См. основную и дополнительную литературу	50	
Подготовка к зачету	См. основную и дополнительную литературу	10	

6. Инновационные образовательные технологии, используемые в учебном процессе

Инновационные формы учебных занятий	Вид работы (Л, ПЗ, ЛР)	Краткое описание	Кол-во ауд. часов
Использование проблемно- ориентированного междисциплинарного подхода к изучению наук	Лекции	Разбор примеров проблемно- ориентированного подхода при изучении и использовании САПР	4
Использование проблемно- ориентированного междисциплинарного подхода к изучению наук	Практические занятия и семинары	Разбор примеров проблемно- ориентированного подхода при изучении и использовании САПР	6

Собственные инновационные способы и методы, используемые в образовательном процессе

Не предусмотрены

Использование результатов научных исследований, проводимых университетом, в рамках данной дисциплины: нет

7. Фонд оценочных средств (ФОС) для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

7.1. Паспорт фонда оценочных средств

Наименование разделов дисциплины	Контролируемая компетенция ЗУНы	Вид контроля (включая текущий)	№№ заданий
Все разделы	ПК-1 способностью принимать участие в работах по расчету и конструированию отдельных деталей и узлов двигателей и энергетических установок ЛА в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования	Зачет	-

Все разделы	ОК-22 способностью самостоятельно приобретать с помощью информационных технологий и использовать в практической деятельности новые знания и умения, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности		-
-------------	--	--	---

7.2. Виды контроля, процедуры проведения, критерии оценивания

Вид контроля	Процедуры проведения и оценивания	Критерии оценивания
Зачет	работ: 1. Создание твердотельной модели детали и создание чертежа по ЕСКД типа болт или гайка. 2 шт. 2. Создание твердотельной сборочной модели и создание чертежа по ЕСКД. 1 шт. 3. Расчет поперечного обтекания балки. 1 шт. 4. Определение напряженно-леформированного состояния и параметров	Зачтено: Все задания выполнены. Контрольные работы пройдены. Не зачтено: Не выполнено одно из заданий.

7.3. Типовые контрольные задания

Вид	Типовые контрольные задания
контроля	типовые контрольные задания
Зачет	Задание №5 - расчет оболочки_rev_02.xlsx; Задание №1 - чертеж деталей (+225)_rev_02.docx; Задание №2 - чертеж деталей(+225)_rev_03.docx; Задание №3 - сборочный чертеж(+225)_rev_03.docx; Задание №4 - расчет балки_rev_02.xlsx

8. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

Не предусмотрена

б) дополнительная литература:

Не предусмотрена

- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:
- г) методические указания для студентов по освоению дисциплины:

1. нет

из них: учебно-методическое обеспечение самостоятельной работы студента:

2. нет

Электронная учебно-методическая документация

	№ Вид	Наименование разработки	Наименование	Доступность
Ma			ресурса в	(сеть Интернет /
литературы	гературы	электронной	локальная сеть;	
			форме	авторизованный /

				свободный до- ступ)
1	Основная литература	— Электрон. дан. — М. : ДМК Пресс, 2010. — 192 с. — Режим доступа: http://e.lanbook.com/book/1314 — Загл. с	ісистема	Интернет / Авторизованный
2	Дополнительная литература	Бунаков, Э.В. Широких. — Электрон. дан. — М.: ДМК Пресс, 2010. — 120 с. — Режим поступа:	система	Интернет / Авторизованный

9. Информационные технологии, используемые при осуществлении образовательного процесса

Перечень используемого программного обеспечения:

- 1. Microsoft-Office(бессрочно)
- 2. Dassault Systèmes-SolidWorks Education Edition 500 CAMPUS(бессрочно)
- 3. ANSYS-ANSYS Academic Multiphysics Campus Solution (Mechanical, Fluent, CFX, Workbench, Maxwell, HFSS, Simplorer, Designer, PowerArtist, RedHawk)(бессрочно)

Перечень используемых информационных справочных систем:

Нет

10. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лекции	306 (2)	Доска, мел, ЭВМ, проектор.
1	110 (2)	Персональные ЭВМ с установленным инженерным ПО