ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Директор института Архитектурно-строительный институт

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Ульрих Д В. Пользователь: ulrikhdv Цата подписания. 3001.2022

Д. В. Ульрих

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.П1.17 Компьютерное моделирование в решении строительных задач

для направления 08.03.01 Строительство

уровень Бакалавриат

профиль подготовки Строительство зданий и проектирование инженерных систем форма обучения очная

кафедра-разработчик Строительное производство и теория сооружений

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 08.03.01 Строительство, утверждённым приказом Минобрнауки от 31.05.2017 № 481

Зав.кафедрой разработчика, к.техн.н., доц.

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога Южн-Уральского государственного университета СЕВДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Киннец А. В. Пользовятель: kinneteav

А. В. Киянец

Разработчик программы, к.техн.н., доц., доцент

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога Кожно-Уральского госуларственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Кивнец А. В. Пользователь: кinnectav

А. В. Киянец

СОГЛАСОВАНО

Руководитель образовательной программы д.техн.н., доц.

Электронный документ, подписанный ПЭП, хранится в системе эмектронного документоборога (ОЖРГУ)

СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП

Кому выдан: Увърих Д. В. Помзоветель: ultribab

Д. В. Ульрих

1. Цели и задачи дисциплины

Формирование у студентов знаний основных положений современного подхода к компьютерному решению задач проектирования и возможности их использования в практике: 1. Дать представление об основах компьютерных технологий решения задач проектирования. 2. Дать представление об алгоритмах и особенностях программы Ansys по реализации рассматриваемых задач проектирования. 3. Научить пользоваться программой Ansys для решения конкретных задач, возникающих в практике.

Краткое содержание дисциплины

Введение в ANSYS Mechanical. Обзор возможностей ANSYS Mechanical для решения инженерных задач. Геометрическое моделирование плоских и пространственных объектов. Построение двумерных и трехмерных конечно-элементных моделей. Примеры решения плоских задач строительной механики. Основы решения нелинейных задач прочности в ANSYS. Создание расчетных моделей, генерация сетки, использование специализированных препроцессоров в ANSYS.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
ПК-6 Способен проводить расчетное обоснование и проектирование оснований и фундаментов, строительных конструкций зданий и сооружений промышленного и гражданского назначения	Знает: основные определения и понятия информационного моделирования в строительстве, принципы использования информационной модели на всех этапах жизненного цикла объекта строительства. Умеет: создавать информационную модель

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
Численные методы расчета строительных конструкций, Железобетонные и каменные конструкции, Конструкции из дерева и пластмасс, Строительная механика, Металлические конструкции, Технология металлов и сварки, Метод конечных элементов для решения задач в строительстве, Основания и фундаменты,	Не предусмотрены

Производственная практика, исполнительская	
практика (6 семестр)	

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Основания и фундаменты	Знает: основные нормативные документы по проектированию фундаментов на естественном основании и фундаментов глубокого заложения, в том числе в особых условиях., основные нормативные документы по проектированию фундаментов на естественном основании и фундаментов глубокого заложения, в том числе в особых условиях. Умеет: анализировать результаты инженерно-геологических изысканий., выполнять расчеты по І и ІІ группам предельных состояний фундаментов на естественном основании и свайных фундаментов. Имеет практический опыт: проектирования конструкций фундаментов на естественном основании и свайных фундаментов, в том числе с использованием специализированных программных комплексов., сбора нагрузок на фундаменты, выбора глубины заложения; определения расчетного сопротивления основания и размеров подошвы фундаментов мелкого заложения; проверки слабых подстилающих слоев; расчета осадки методом послойного суммирования; проверки слабых подстилающих слоев; расчетного определения несущей способности свай; расчета подпорных стен; конструирования фундаментов на естественном основании и свайных фундаментов.
Металлические конструкции	Знает: основы проектирования металлических конструкций зданий и сооружений различного назначения с учетом особенностей их эксплуатации и конструктивных решений; нормативную базу проектирования строительных объектов; математические методы определения напряженно деформированного состояния объектов строительства при действии статических и динамических воздействий. Умеет: правильно выбирать конструкционные материалы, обеспечивающие требуемые показатели надежности, безопасности, экономичности и эффективности сооружений; анализировать воздействия окружающей среды на материал в конструкции; самостоятельно использовать математический аппарат, содержащийся в литературе по строительным наукам; применять полученные знания при работе на персональном компьютере, при

	использовании операционной системы. Имеет
	практический опыт: инженерного подхода к
	проектированию сложных конструктивных
	систем, навыков конструирования и расчета
	элементов; владения современными
	компьютерными технологиями проектирования и
	исследования напряженного состояния
	строительных объектов при различных
	воздействиях.
	Знает: основные понятия, законы, методы
	механики деформируемого тела; основные
	понятия линейно-деформируемых систем и
	методы расчёта стержневых систем. Умеет:
	применять методы математики, сопротивления
	материалов и строительной механики при
	расчете зданий, сооружений и отдельных
	конструкций; составлять расчётную схему
Строительная механика	конструкции, выбирать метод расчёта
	статически. Имеет практический опыт: владения
	вычислительной техникой и программными
	комплексами для расчета строительных
	конструкций, зданий и сооружений;
	современных методов анализа строительных
	систем, включая методы компьютерного
	моделирования конструкций, зданий и
	сооружений.
	Знает: основные виды сплавов, их строение;
	физические, механические и служебные
	свойства, области применимости и сферы
	использования материалов; классификацию
	видов термической обработки; особенности
	технологических процессов получения
	материалов с заданным комплексом свойств;
	основные виды сварки, применяемые в
	строительстве; преимущества и недостатки
	сварных соединений; основные типы сварных
	соединений; технологические требования к
	сварным соединениям; основы технологии
	ручной, механизированной и автоматической
	электродуговой сварки плавлением, газовая и
Технология металлов и сварки	контактная сварка; источники сварочного тока;
Temonorum merusinos ir esupini	аналитические зависимости расчета режимов
	электродуговой и контактной сварки; дефекты
	сварных соединений; технические требования к
	сварным соединениям; методы контроля сварных
	соединений; способы устранения дефектов
	сварных соединений. Умеет: анализировать
	диаграмму состояния "железо-углерод";
	выбирать условия проведения термической
	обработки для конкретного вида стали; выбирать
	необходимый метод определения свойств
	материалов, привлечь их для определения
	соответствующий физико-математический
	аппарат; классифицировать материал по его
	составу; применять полученные знания для
	интерпретации наблюдаемых экспериментально

	явлений; работать с универсальными средствами измерений; использовать преимущества сварных соединений при выборе способа соединения металлических элементов; анализировать причины возникновения дефектов сварных соединений. Имеет практический опыт: проведения основных видов термической обработки; навыков маркировки сталей и
	сплавов; методов анализа и определения физических, химических и механических свойств металлов; методик выбора металлофизического эксперимента для решения определенной задачи; расчета режимов
	электродуговой сварки; навыков контроля качества сварных соединений.
	Знает: базовые математические зависимости, основные положения математического анализа и моделирования строительных конструкций посредством вычислительного аппарата высшей математики. Умеет: производить расчёт
Численные методы расчета строительных конструкций	элементов строительных конструкций с применением принципов и методов строительной механики. Имеет практический опыт: способов алгоритмизации технических
	задач, базовых основ языков программирования на компьютере и методов автоматизированных расчётов строительных конструкций на базе пакетов прикладных программ, навыков применения методов вычислительной математики для решения задач строительства на ЭВМ.
Метод конечных элементов для решения задач в строительстве	Знает: теорию метода конечных элементов (МКЭ), который является основой большинства современных вычислительных комплексов, предназначенных для расчета строительных конструкций и их элементов. Умеет: правильно формулировать расчетные задачи, подготавливать расчетные схемы строительных конструкций, проводить компьютерные расчеты, анализировать полученные результаты и формировать отчеты по выполненным расчетам. Имеет практический опыт: использования современных программных комплексов автоматизированного расчета конструкций, оценивать и контролировать правильность полученных результатов.
Железобетонные и каменные конструкции	Знает: основные научно-технические проблемы и перспективы развития строительной науки, строительства и смежных областей техники; методы системного анализа при решении научно-технических, организационно-технических и конструкторско-технологических задач в области промышленного и гражданского строительства; методы проведения теоретических и экспериментальных исследований с использованием современного оборудования и

	средств вычислительной техники; методы архитектурно-строительного проектирования и его физико-технические основы; эффективные проектные решения, отвечающие требованиям перспективного развития отрасли, в том числе с использованием САПР. Умеет: решать вопросы расчета и конструирования строительных объектов и их конструктивных элементов с учетом прочности, жесткости, устойчивости под воздействием постоянных и временных нагрузок. Имеет практический опыт: методов использования математических моделей, элементов прикладного математического обеспечения САПР в решении проектноконструкторских и технологических задач; методов расчетов зданий и сооружений, их оснований и фундаментов, способами
	оформления технических решений на чертежах; методов испытаний физико-механических свойств строительных материалов, изделий, конструкций и грунтов.
Конструкции из дерева и пластмасс	Знает: методы расчета деревянных и пластмассовых конструкций; работу под нагрузкой основных типов конструктивных элементов; принципы усиления деревянных конструкций существующих зданий. Умеет: конструировать элементы, узлы, соединения, деревянные и пластмассовые конструкции; выполнять расчет усиления деревянных конструкций. Имеет практический опыт: в проектировании конструктивных систем, конструировании и расчете элементов; в работе с программами ЭВМ по конструированию конструкций; мониторинга и испытания деревянных конструкций.
Производственная практика, исполнительская практика (6 семестр)	Знает: способы социального взаимодействия; установленные нормы и правила командной работы., приёмо-сдаточные нормы технологических процессов в строительстве, технологии строительных процессов, выполняемых на месте прохождения практики; работу основных строительных машин и механизмов., принципы проектирования зданий и сооружений, инженерных сетей и систем. Умеет: определять свою роль в команде, исходя из стратегии сотрудничества для достижения поставленной цели; оценивать идеи других членов команды для достижения поставленной цели., выполнять строительно-монтажные работы в составе бригады или звена, оформлять приёмо-сдаточную документацию., применять методику архитектурно-строительного проектирования (разработки планов, фасадов, узлов здания). Имеет практический опыт: обмена информацией, знаниями и опытом с членами команды., технологий монтажа, наладки,

испытания и сдачи в эксплуатацию строительных конструкций и инженерных систем строительных объектов., работы в
проектных программных комплексах.

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 52,25 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 8
Общая трудоёмкость дисциплины	72	72
Аудиторные занятия:	48	48
Лекции (Л)	24	24
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	24	24
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	19,75	19,75
с применением дистанционных образовательных технологий	0	
Подготовка к зачету	9,75	9.75
Подготовка к практическим занятиям	10	10
Консультации и промежуточная аттестация	4,25	4,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

No॒	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах			
раздела	-	Всего	Л	ПЗ	ЛР
1	Введение в ANSYS Mechanical. Обзор возможностей ANSYS Mechanical для решения инженерных задач.		4	0	0
2	Конечно-элементное моделирование балок	10	4	6	0
	Решение трехмерных задач с конечными элементами оболочки в упругой постановке	10	4	6	0
1 4	Решение трехмерных задач с использованием объемных конечных элементов в упругой постановке	12	6	6	0
5	Решение нелинейных задач. Контактная задача	12	6	6	0

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Введение в ANSYS Mechanical. Обзор возможностей ANSYS Mechanical для решения инженерных задач	4
2	2	Конечно-элементное моделирование балок	4

3)	Решение трехмерных задач с конечными элементами оболочки в упругой постановке	4
4	1 4	Решение трехмерных задач с использованием объемных конечных элементов в упругой постановке	6
5	5	Решение нелинейных задач. Контактная задача	6

5.2. Практические занятия, семинары

<u>№</u> занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	2	Конечно-элементное моделирование плоских балок	6
2	3	Решение трехмерных задач с конечными элементами оболочки в упругой постановке	6
3	4	Решение трехмерных задач с использованием объемных конечных элементов в упругой постановке	6
4	5	5 Решение нелинейных задач. Контактная задача	

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС				
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов	
Подготовка к зачету	Основная литература: источник 1. Дополнительная литература: источники 1,2.	8	9,75	
Подготовка к практическим занятиям	Основная литература: источник 1. Дополнительная литература: источники 1,2.	8	10	

6. Текущий контроль успеваемости, промежуточная аттестация

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва - ется в ПА
1	8	Текущий контроль	Контрольная работа по разделу 1	1	10	0-6 баллов - ответ неправильный. 7-8 баллов - ответ правильный, но есть незначительные ошибки. 9-10 баллов - ответ правильный, имеется сведения из	зачет

						дополнительного материала СРС.	
2	8	Текущий контроль	Контрольная работа по разделу 2	1	10	0-6 баллов - ответ неправильный. 7-8 баллов - ответ правильный, но есть незначительные ошибки. 9-10 баллов - ответ правильный, имеется сведения из дополнительного материала СРС.	зачет
3	8	Текущий контроль работа по разделу 3		1	10	0-6 баллов - ответ неправильный. 7-8 баллов - ответ правильный, но есть незначительные ошибки. 9-10 баллов - ответ правильный, имеется сведения из дополнительного материала СРС.	зачет
4	8	Текущий контроль	Контрольная работа по разделу 4	1	10	0-6 баллов - ответ неправильный. 7-8 баллов - ответ правильный, но есть незначительные ошибки. 9-10 баллов - ответ правильный, имеется сведения из дополнительного материала СРС.	зачет
5	8	Текущий контроль	Контрольная работа по разделу 5	1	10	0-6 баллов - ответ неправильный. 7-8 баллов - ответ правильный, но есть незначительные ошибки. 9-10 баллов - ответ правильный, имеется сведения из дополнительного материала СРС.	зачет
6	8	Проме- жуточная аттестация	Зачет	-	50	5045 баллов - Полные правильные ответы на вопросы и правильное решение задач. 4435 баллов - Неполные, но правильные ответы на вопросы и правильное решение задач, либо полные правильные ответы на вопросы и небольшие ошибки в задачах. 3425 - Неполные, но правильные ответы на вопросы и небольшие ошибки в задачах, либо полные правильные ответы на вопросы и неверно решенные задачи. 240 - Неверные ответы на вопросы и ошибки в задачах.	зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	Письменный зачет (1 теоретический вопрос и 1 задача).	В соответствии с пп. 2.5, 2.6 Положения

6.3. Оценочные материалы

Компетенции	Результаты обучения					Л 5 6
ПК-6	Знает: основные определения и понятия информационного моделирования К-6 в строительстве, принципы использования информационной модели на всех этапах жизненного цикла объекта строительства.		+	+	+-	+ +
ПК-6	Умеет: создавать информационную модель объекта строительства, экспортировать аналитическую часть модели в расчетные комплексы, организовать коллективную работу над проектом.	+	+	+	+-	+ +
IIIK-n	Имеет практический опыт: работы с современными программными комплексами для создания и управления информационной моделью.	+	+	+	+-	+ +

Фонды оценочных средств по каждому контрольному мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Каплун, А. Б. Ansys в руках инженера Текст практ. рук. А. Б. Каплун, Е. М. Морозов, М. А. Олферьева; предисл. А. С. Шадского. Изд. стер. М.: URSS: ЛИБРОКОМ, 2014. 269 с. ил.
- б) дополнительная литература:
 - 1. Басов, К. А. ANSYS [Текст] справ. пользователя К. А. Басов. 2-е изд., стер. М.: ДМК-Пресс, 2012. 639 с. ил.
 - 2. Городецкий, А. С. Компьютерные модели конструкций [Текст] А. С. Городецкий, И. Д. Евзеров. М.: Издательство Ассоциации строительных вузов, 2009. 357 с. ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. ВВЕДЕНИЕ В КОМПЬЮТЕРНЫЙ КОНСТРУКЦИОННЫЙ АНАЛИЗ: Учебно-методическое пособие./ О.М.Огородникова, Екатеринбург: УГТУ-УПИ, 2001. 50 с.

из них: учебно-методическое обеспечение самостоятельной работы студента:

Электронная учебно-методическая документация

№	TITEPOTUNLI	Наименование ресурса в электронной форме	Библиографическое описание
1	Дополнительная литература	eLIBRARY.RU	ИСПОЛЬЗОВАНИЕ МЕТОДОВ ОПТИМИЗАЦИИ В ЗАДАЧАХ УСИЛЕНИЯ КОНСТРУКЦИЙ https://elibrary.ru/item.asp?id=24988536

Перечень используемого программного обеспечения:

- 1. Microsoft-Windows(бессрочно)
- 2. Microsoft-Office(бессрочно)
- 3. ANSYS-ANSYS Academic Multiphysics Campus Solution (Mechanical, Fluent, CFX, Workbench, Maxwell, HFSS, Simplorer, Designer, PowerArtist, RedHawk)(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лекции	604	Системный блок Intel + монитор LCD – 13 шт., Проектор ASER PD100D, мультимедийная система: Колонки JetBalanceJB-3812x30Bт-2шт, микрофон SHURE C606-N-динамический с выкл.и кабелем, мультимедийный информационный комплекс: документ-камера ASER Video CP300, монитор ASER 19», специализированный рабочий стол преподавателя, пульт управления видеокоммутатором, принтер лазерный HP6L, Microsoft-Windows(бессрочно)
Практические занятия и семинары Системны мультимед SHURE Co информац ASER 19» управлени		Системный блок Intel + монитор LCD – 13 шт., Проектор ASER PD100D, мультимедийная система: Колонки JetBalanceJB-3812x30Bт-2шт, микрофон SHURE C606-N-динамический с выкл.и кабелем, мультимедийный информационный комплекс: документ-камера ASER Video CP300, монитор ASER 19», специализированный рабочий стол преподавателя, пульт управления видеокоммутатором, принтер лазерный HP6L, Microsoft-Windows(бессрочно)