Морозов Сергей Иванович

Кандидат физико-математических наук, доцент
E-mail: 
morozovsi[at]susu[dot]ru
Научные профили: 
РИНЦ: SPIN-код 5559-2540, Author ID 47858
Scopus ID: 8883470200
Web of Science ResearcherID: M-6834-2016
Статьи и монографии за последние три года: 
High-energy-density material with magnetically modulated ignition / J.. Allen //Journal of the American Chemical Society.–2024.–Vol. 146 No. 7.– P.4500-4507
Deciphering the Atomistic Mechanism of Si(111)-7 × 7 Surface Reconstruction Using a Machine-Learning Force Field / Y.. Shen //Journal of the American Chemical Society.–2023.–Vol. 145 No. 37.– P.20511-20520
Engineering twin boundaries for enhancing strength and ductility of thermoelectric semiconductor PbTe / M.. Huang //Journal of Alloys and Compounds.–2023.–Vol. 959
Growth Mechanism and Kinetics of Diamond in Liquid Gallium from Quantum Mechanics Molecular Dynamics Simulations / Y.. Shen //ACS applied materials & interfaces.–2023.–Vol. 15 No. 27.– P.33046-33055
Quantum-mechanics-based molecular dynamics simulations of the structure and performance of sulfur-enriched Li3PS4 cathodes / Morozov, S.I //Cell Reports Physical Science.–2023.–Vol. 4 No. 3
Atomistic explanation of failure mechanisms of thermoelectric type-VIII clathrate Ba8Ga16Sn30 / X.. Zhang //Materials Today Communications.–2022.–Vol. 31
Deformation and Failure Mechanisms of Thermoelectric Type-I Clathrate Ba8Au6Ge40 / X.. Zhang //ACS applied materials & interfaces.–2022.–Vol. 14 No. 3.– P.4326-4334
Enhancing the shear strength of single-crystalline In4Se3 through point defects / X.. Huang //Scripta Materialia.–2022.–Vol. 211
Estimating the lower-limit of fracture toughness from ideal-strength calculations / L.. Borgsmiller //Materials Horizons.–2022.–Vol. 9 No. 2.– P.825-834
Nanotwin-induced ductile mechanism in thermoelectric semiconductor PbTe / M.. Huang //Matter.–2022.–Vol. 5 No. 6.– P.1839-1852
Fracture toughness of thermoelectric materials / G.. Li //Materials Science and Engineering: R: Reports.–2021.–Vol. 144
Merinov, B.V. Proton transport mechanism and pathways in the superprotonic phase of M3H(AO4)2solid acids from: Ab initio molecular dynamics simulations / B.V. Merinov, S.I. Morozov //Physical Chemistry Chemical Physics.–2021.–Vol. 23 No. 31.– P.17026-17032
Reaction Mechanism and Energetics of Decomposition of Tetrakis(1,3-dimethyltetrazol-5-imidoperchloratomanganese(II)) from Quantum-Mechanics-based Reactive Dynamics / S.V. Zybin //Journal of the American Chemical Society.–2021.–Vol. 143 No. 41.– P.16960-16975
Reduction of N2to Ammonia by Phosphate Molten Salt and Li Electrode: Proof of Concept Using Quantum Mechanics / C.. Musgrave //Journal of Physical Chemistry Letters.–2021.–Vol. 12 No. 6.– P.1696-1701
Characterizing local metallic bonding variation induced by external perturbation / H.. Wang //Physical Chemistry Chemical Physics.–2020.–Vol. 22 No. 4.– P.2372-2378
Design of a Graphene Nitrene Two-Dimensional Catalyst Heterostructure Providing a Well-Defined Site Accommodating One to Three Metals, with Application to CO2 Reduction Electrocatalysis for the Two-Metal Case / S.. Chen //Journal of Physical Chemistry Letters.–2020.–Vol. 11 No. 7.– P.2541-2549
Intrinsic mechanical behavior of MgAgSb thermoelectric material: An ab initio study / G.. Li //Journal of Materiomics.–2020.–Vol. 6 No. 1.– P.24-32
Li-diffusion at the interface between Li-metal and [Pyr14][TFSI]-ionic liquid: Ab initio molecular dynamics simulations / B.V. Merinov //Journal of Chemical Physics.–2020.–Vol. 152 No. 3
The Mechanism of Deformation and Failure of In4Se3 Based Thermoelectric Materials / W.. Deng //ACS Applied Energy Materials.–2020.–Vol. 3 No. 1.– P.1054-1062
Dramatically reduced lattice thermal conductivity of Mg 2 Si thermoelectric material from nanotwinning / G.. Li //Acta Materialia.–2019.–Vol. 169 No. -.– P.9-14
Interface Structure in Li-Metal/[Pyr14][TFSI]-Ionic Liquid System from ab Initio Molecular Dynamics Simulations / B.V. Merinov //Journal of Physical Chemistry Letters.–2019.–Vol. 10 No. 16.– P.4577-4586
Li, G.. Li, An, and Morozov reply / G.. Li, Q.. An, S.I. Morozov //Physical Review Letters.–2019.–Vol. 123 No. 11
Light irradiation induced brittle-to-ductile and ductile-to-brittle transition in inorganic semiconductors / H.. Wang //Physical Review B.–2019.–Vol. 99 No. 16
Photomechanical effect leading to extraordinary ductility in covalent semiconductors / H.. Wang //Physical Review B.–2019.–Vol. 100 No. 9
Determining ideal strength and failure mechanism of thermoelectric CuInTe2 through quantum mechanics / Li Guodong //Journal of Materials Chemistry A.–2018.–Vol. 6.– P.11743-11750
Ductile deformation mechanism in semiconductor α-Ag2S / Li Guodong //npj Computational Materials.–2018.–Vol. 4
Grain Boundaries Softening Thermoelectric Oxide BiCuSeO / Li Guodong //ACS Applied Materials and Interfaces.–2018.–Vol. 10-7.– P.6772-6777
Icosahedra clustering and short range order in Ni-Nb-Zr amorphous membranes / Sarker Swagotom //Scientific Reports.–2018.–Vol. 8
Mechanical properties in thermoelectric oxides: Ideal strength, deformation mechanism, and fracture toughness / Li Guodong //Acta Materialia.–2018.–Vol. 149.– P.341-349
Mechanical softening of thermoelectric semiconductor Mg2Si from nanotwinning / Li Guodong //Scripta Materialia.–2018.–Vol. 157.– P.90-94
An, Q. Brittle failure of β- And τ-boron: Amorphization under high pressure / An, Q., S.I. Morozov //Physical Review B.–2017.–Vol. 95 No. 6
Enhanced Strength Through Nanotwinning in the Thermoelectric Semiconductor InSb / Li Guodong //PHYSICAL REVIEW LETTERS.–2017.–Vol. 119
Mechanism and kinetics of the electrocatalytic reaction responsible for the high cost of hydrogen fuel cells / T.I. Cheng //Physical Chemistry Chemical Physics.–2017.–Vol. 19.– P.2666-2673
Quantum Mechanics Reactive Dynamics Study of Solid Li-Electrode/Li6PS5Cl-Electrolyte Interface / Cheng Tao //ACS Energy Letters.–2017.–Vol. 2(6).– P.1454-1459
Superstrengthening Bi2Te3 through Nanotwinning / Li Guodong //PHYSICAL REVIEW LETTERS.–2017.–Vol. 119-8
Вяткин, Г.П. ВЛИЯНИЕ ПРИМЕСИ Mn НА ДИССОЦИАЦИЮ СНx НА ПОВЕРХНОСТИ<br>Ni(111) МОДЕЛИРОВАНИЕ ИЗ ПЕРВЫХ ПРИНЦИПОВ / Г.П. Вяткин, С.И. Морозов //ХХ МЕНДЕЛЕЕВСКИЙ СЪЕЗД ПО ОБЩЕЙ И ПРИКЛАДНОЙ ХИМИИ.–2017.–Том 4.– C.103-103
Гусев, А.В. Совместная поверхностная сегрегация серебра и олова в тройных сплавах Cu-Ag-Sn / А.В. Гусев, С.И. Морозов, А.Е. Чудаков //Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика».–2017.–Том 9.– C.58-65
Российские патенты (включая свидетельства о регистрации программ): 
Система управления проведением лабораторных работ по физике (Ampere)
Международные патенты (включая свидетельства о регистрации программ): 
Способ рафинирования металла
Устройство для непрерывного термического оксодирования стальных изделий
Повышение квалификации: 
Основы педагогической деятельности в образовательной организации (252 ч., 2024 г.)
Квантовая обработка информации и квантовые технологии (68 ч., 2023 г.)
Data-аналитик: старт карьеры (256 ч., 2022 г.)
Подготовка учащихся к олимпиадам на языке С++ (72 ч., 2022 г.)
Куратор в современном вузе (252 ч., 2022 г.)
Цифровые компетенции в профессиональной педагогической деятельности (72 ч., 2020 г.)
Информационно-коммуникационные технологии в педагогической деятельности (72 ч., 2019 г.)
Педагогические технологии в SMART-университете (256 ч., 2019 г.)
Экспертная деятельность в сфере оценки качества образования (36 ч., 2019 г.)
Углубленное изучение физики в 8-11 классах в условиях реализации ФГОС (72 ч., 2018 г.)
Углубленное изучение физики в 8 - 11 классах в условиях реализации ФГОС (72 ч., 2017 г.)
Функционирование информационной образовательной среды (36 ч., 2017 г.)
Экспертная деятельность в сфере оценки качества образования (36 ч., 2017 г.)
Информационные технологии в процессе преподавания курса общей физики (108 ч., 2016 г.)
Методика преподавания олимпиадной физики (72 ч., 2016 г.)
Профессионально-педагогическая компетентность учителей-предметников при подготовке экспертов по проверке работ государтсвенной итоговой аттестации в форме единого государственного экзамена (физика) (36 ч., 2015 г.)
Компьютерное моделирование и массивные вычисления в современной физике (72 ч., 2014 г.)
Подготовка координаторов для системы дистационного образования (72 ч., 2001 г.)
Вы нашли ошибку в тексте:
Просто нажмите кнопку «Сообщить об ошибке» — этого достаточно. Также вы можете добавить комментарий.